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Figure 1: Our method is able to reconstruct the face of a person wearing a Head-Mounted Display (HMD) in real-time. It does so while
trying to respect the user facial expression, without the need for any other sensor besides a standard color video camera.

Abstract

One of the main issues of current Head-Mounted Displays (HMD)
is that they hide completely the wearer’s face. This can be an issue
in social experiences where two or more users want to share the 3D
immersive experience. We propose a novel method to recover the
face of the user in real-time. First, we learn the user appearance off-
line by building a 3D textured model of his head from a series of
pictures. Then, by calibrating the camera and tracking the HMD’s
position in real-time we reproject the model on top of the video
frames mimicking exactly the user’s head pose. Finally, we remove
the HMD and replace the occluded part of the face in a seaming-
less manner by performing image in-painting with the background.
We further propose an extension to detect facial expressions on the
visible part of the face and use it to change the upper face model ac-
cordingly. We show the promise of our method via some qualitative
results on a variety of users.
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1 Introduction

Not surprisingly, mass-market Head-Mounted Displays (HMD)
such as Oculus Rift [OCULUS VR ], are becoming increasingly
popular. After major design improvements during the last years,
they are now lighter, cheaper, have higher screen resolutions and
lower latencies, making them more comfortable to use and greatly
improving the user experience. As a result, HMD are now at a point
where they will slowly start to affect the way we consume digital
content in our everyday lives.

One of the main issues of wearing an HMD is that they are very
invasive, and hide completely the wearer’s face, see Figure 1. In
many cases, this is not an issue since the user is isolated in a purely
individualistic experience. However, HMDs can also be used in
social scenarios. One example can be collaborative 3D immersive
games where two individuals play together and can still talk and see
each other’s faces. Another example is video-conferencing, where
switching from traditional screens and cameras to 3D acquisition +
HMDs can bring the possibility of viewing the other person and his
surroundings almost as if he was really there physically. In these
and other cases, not seeing the other person’s face clearly damages
the quality of the experience.

In this paper we propose to remove the HMD and replace it by the
face of the wearer, using 3D graphics and computer vision tech-
niques. Our method involves three separate steps: 1) building a 3D
face model of the user from several photographs, 2) re-project the
model into the video mimicking the person’s head pose and facial
expressions (estimated via HMD’s tracking and face landmarking
techniques respectively) and 3) smartly combine both images in a
seamless way, keeping the visible parts of the face (e.g. mouth,
chin) while replacing those hidden by the HMD (e.g. eyes, nose,
etc.). Our method works at real-time speeds to ensure its applica-
bility to video streaming scenarios.

One of the main features of our method is that it is able to recover
the main facial expressions a user can portray. Using face landmark



estimation techniques, we train a system to learn the facial expres-
sions of the user from the lower part of the face only, and use it
to change the model accordingly at test time. The result is a face
recovery where the upper part of the face changes in synchrony
with the movement of the lower (visible) part, greatly improving
the quality of the overall result.

2 Related work

To the best of our knowledge, we are the first to propose face re-
construction of a person wearing a HMD via on-line tracking, facial
expression detection and user-specific 3D head models. However,
our work shares common ground with general occluded face recon-
struction, as well as with prior art in face transfer, which consists in
swapping expressions across two different people.

Face reconstruction: [Hwang and Lee 2003] were among the
first to tackle the problem of recovering partially occluded faces.
Their appearance learning method was based on a 2D morphable
model and faces were prototyped in a PCA-based projection of
both shapes and textures, much like in the original AAM formu-
lation [Cootes et al. 2001]. Similarly, [Mo et al. 2004; Yu and T.
2008; Hosoi et al. 2012] proposed to recover missing regions by
exploiting the correlations between nearby regions in aligned shape
space using other linear dimensionality reduction techniques such
as FW-PCA or linear mixtures. Finally, [D.Lin and Tang 2007]
proposed a Bayesian framework that also allows the automatic de-
tection of face occlusions. These methods often use general image
in-painting techniques [Bertalmio et al. 2000; Pérez et al. 2003] as
a post-processing step to improve the final result.

These approaches assume that head pose and expressions are con-
stant or known, that all faces were either previously aligned, that
ground-truth facial landmarks are given and that occlusion mask is
known both during training and testing. None of these assumptions
hold in our scenario, hence the need for a novel method.

Face transfer: Another related application is that of swapping two
faces, transferring a source face to a target face while conserving the
original facial expression of the target. Some examples are [Vla-
sic et al. 2005; Bitouk et al. 2008; Cheng et al. 2009; Dale et al.
2011; Huang and De La Torre 2012]. These methods often use 3D
morphable models [Blanz and Vetter 1999] of the face, 3D recon-
struction [Chen and Medioni 1992; Baillard and Zisserman 2000;
Faugeras and Luong 2004] and in-painting techniques similarly to
what proposed in this paper. However, they deal with fully unoc-
cluded faces, and many of the methods proposed cannot work when
more than half of the face is occluded as is the case in our scenario.
Moreover, they seldom run in real-time.

HMD Face expression detection: Also somewhat related is recent
work by [Li et al. 2015], where a new HMD is developed that en-
ables 3D facial performance-driven animation by adding strain sen-
sors mounted on the foam liner of the headset and a head-mounted
RGB-D camera to enhance the tracking in the mouth region. While
we welcome any improvement to current HMD’s, we argue that
much can be done using a simple video camera and modern com-
puter vision techniques, as shown in this paper.

One of the backbones of our method is face landmark estimation,
which consists in locating the position of a sparse set of pre-defined
2D key-point landmark locations encoding shape (commonly in-
cluding, for example, the corners of the eyes, mouth, and nose).
How to robustly estimate these landmarks is a widely studied field
in computer vision. We use the method described in [?] due to
its robustness, speed and availability of code online, but any other
could equally be used. Reviewing all existing face landmarking
methods falls behind the scope of this paper due to tight space con-
straints.

3 Method

Figure 1 shows an outline of the proposed method. The first part,
explained in Section 3.1, consists in building (off-line) a user spe-
cific model that includes a discrete representation of the user facial
expressions. Then, the method performs real-time face reconstruc-
tion by tracking the HMD’s position, detecting the user facial ex-
pression and in-painting the occluded pixels with the help of the
projected model (see Section 3.2).

3.1 Building the user-specific model

3D mesh building: The first step is to build a textured 3D model
of the user’s head from a series of photographs of the user taken
from varied view-points (5-10 normally suffice). This can be done
using available free software such as [Autodesk Inc. ].

Adding facial expressions: The second step is to learn the ar-
ray of expressions the user usually portrays when he acts naturally.
We collect several images/videos of the user talking (without wear-
ing an HMD) and we apply to each an automatic face landmarking
method [?] to estimate the shape of the face. This results inN train-
ing shapes S =< S1,S2, ...,SN >, where N is the total number
of images collected. Each S encodes the x and y image positions
of L landmarks S =< X,Y >∈ R2L. A typical representation is
Multi-Pie L = 68 landmark format [Gross et al. 2008].

The shapes are normalized to remove variations due to different
face position and resolutions. Then, we cluster them using standard
K-means algorithm with K being the number of expressions we
want to discover. This results in a partition of the data into K clus-
ters, each containingNk images. Each cluster Ck is represented by
the average of all the normalized shapes it contains:

Ck ≡< X̄, Ȳ >≡ 1

Nk
<

Nk∑
n=1

Xn,

Nk∑
n=1

Yn > (1)

The cluster centers C =< C1,C2, ...,CK > form our expression
classifier. Once the clusters are created, for each we learn a texture
representation which best summarizes its Nk images, see Figure 2.
First, we decompose the image following a standard delaunay tri-
angulation on the landmarks, decomposing the image into a set of
landmark-indexed triangles:

DT (S) =< T1, T2, ..., TT >, (2)
where each Tt = [< a,b, c >∈ [1..L] ∧ a 6= b 6= c]

Model Cluster Model Transfer
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Figure 2: Building expression-specific textures

When projected into the image, the convex hull of each triangle
Tt contains a set of pixels. Rasterizing these pixels across all Nk

images result in a set of vectors:



P =< P1, ...,PNk >∈ RM (3)

Pn =< raster(Imagen, T1), ..., raster(Imagen, TT ) >

Each P has a fixed size M (each triangle is warped across all Nk

images to have the same size). From these vectors, we apply di-
mensionality reduction techniques (e.g. PCA [Pearson 1901]) and
keep only the first Q principal components (whith Q << Nk), re-
sulting in a set of Q vectors P ′ =< P′1,P

′
2, ...,P

′
Q >. Finally,

our cluster-specific texture representative P̄ is the average pixel in-
tentity of each pixel for all Q vectors P̄ = 1

Q

∑Q
q=1 P′q .

This process is repeated for each cluster, resulting in K cluster-
specific textures P̄1...P̄K . Finally, we also establish the position
of the landmarks in the original UV Map of the textured model
(manually). With this equivalence, we can transfer to the UV map
our texture representative P̄k by warping and copying the triangle
contents. Repeating this for eachK cluster results inK expression-
specific UV maps among which to choose.

3.2 Real-time face recovery

Figure 3: Test time method outline

Fig. 3 shows the steps involved at test time, we explain them below.

HMD Tracking: For a successful face recovery, we need to esti-
mate the user’s head pose in the camera frame. Most HMD provide
an Inertial Measurement Unit (IMU) to assess the user’s head rota-
tions. The IMU suffices to adapt the video content to the user head
movements but it remains a very raw and laggy estimation of the
real head rotation. Moreover, it doesn’t provide any information
regarding translations. Therefore, video-based tracking techniques
are needed. Two different methods have been developed, one for
each HMD model tested.

Oculus DK1: For the DK1 we developed a fiducial marker-based
solution. Four ArUco patterns [Garrido-Jurado et al. 2014] were
fixed on the front and lateral parts of the Oculus rift, to allow a
fixed video camera placed in front of the user to always catch at
least one marker during important head rotations. During a typical
tracking session, the 4 corners of each marker are detected making
use of the image processing algorithms available in the ArUco li-
brary. The pose estimation is then obtained thanks to a Perspective-
n-Point camera pose estimation algorithm such as ePnP [Lepetit
et al. 2009] (assuming camera intrinsic parameters are known fol-
lowing a classical chessboard calibration).

Oculus DK2: The second version of the Oculus HMD comes with
an embedded tracking system in addition to the previous IMU-
based solution. It uses a layer of blinking infrared light-emitting

diodes inlayed just behind the external surface of the helmet and a
fixed infrared sensitive video camera installed in front of the user.
This new system allows to obtain an accurate estimation of both the
rotation and translation of the HMD.

However, the infrared camera cannot be set up to acquire color
images and therefore cannot be used for the face recovery proce-
dure. To overcome this limitation, a fixed regular color camera was
used in combination with the infrared sensor. To obtain the user
head pose in the color camera frame while exploiting the embed-
ded infrared tracking system, a co-calibration procedure between
the two sensors was carried out (not explained here due to space
constraints).

Landmark estimation: In parallel to the HMD tracking, we ap-
ply the image-based face landmarking algorithm. We train a mouth-
only model to avoid errors due to heavy occlusion in the other areas
such as eyes, nose, etc. and use it to estimate the current shape S
of the mouth in the video stream. We also enforce frame-to-frame
temporal coherence via shape tracking techniques [?].

Expression detection: We classify the current frame as be-
longing to the expression-cluster with most similar mouth shape.
We compute the distance between the current mouth/chin nor-
malized shape estimate S and all the cluster centers C =<
C1,C2, ...,CK >. That which has minimal distance is considered
to be the best match:

arg min
k

K∑
k=1

‖Ck − S‖2 (4)

The 3D mesh is filled-in using the UV map created during training
from the representative P̄k of the expression k detected.

In-painting: Once the 3D expression-specific model is correctly
aligned on top of the current video frame, in-painting operations
are performed to achieve a seamless face recovery. We use the
HMD position information to select which parts of the 3D model
are kept and which removed (occlusion mask). To reduce differ-
ences in color between the texture in the 3D model and the current
video frame, we first perform a statistical color transfer to alter the
3D model texture color so that it matches that of the target image
(where µ=average and σ = standard deviation):

src =

(
σtarget

σsrc
∗ (target− µsrc)

)
+ µsrc (5)

Then, we perform laplacian blending on the occluded region, merg-
ing pixels from the model, the video frame and the background
(learnt off-line). The blending removes discontinuities at the bor-
ders and further polishes color differences, resulting in a seamless
composition.

4 Results

Figure 4 shows some qualitative example results on three users, us-
ing two different HMD models (Oculus DK1 and DK2) each with
a different tracking system (pattern-based and infrared-led). See
also videos in Supp. Material. Please note that we cannot measure
quantitative results due to lack of ground-truth (face is hidden nat-
urally and not artificially). In all cases we used [K = 6, Q = 10]
empirically found to give best results.



Figure 4: Some example results. See also videos in Supp. material.

These results show the potential of our method. Compared to the
original, occluded input, the person is clearly recognizable, and
while the replacement is far from perfect, it is convincing. When the
expression is correctly detected, the emotion of the user is clearly
conveyed. Our method, implemented in C++ with parts in GPU
(GLSL) runs at 30 frames per second in a standard desktop PC.

We consider these results very encouraging considering the diffi-
culty of the task (working with faces occluded by more than 80%
is no easy task). For future work, we will focus on improving the
model building and the expression detector. The former can proba-
bly benefit from the use of 3D morphable models and blendshapes.
The latter remains a challenging task, since some expressions re-
semble each other very closely when judged solely from the mouth
(e.g. doubt and fear). However, we think that results can be im-
proved by adding appearance features and leveraging large human-
expression public datasets as general training examples to comple-
ment the user-specific ones.
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